

SURVEY REPORT

Jervis Bay Mussel Farm, NSW

For

DPI

27/01/2025

PO BOX 530 Port Macquarie 2444, NSW Australia www.astutesurveying.com.au bgray@astutesurveying.com.au 04 22 44 1017 (within Australia) +61 4 22 44 1017 (outside Australia)

General Information

Survey Class	NA
Hydrographic Surveyor	Ben Gray CPHS1
	Paul Davies
Survey Dates	18/12/2024
Purpose of Survey	Hydrographic Survey
Port	Jervis Bay
Regional Harbour Master	NA
Survey Areas Proposed Mussel Farm	

Reference documents

Rev No	Issue Date	Revision Details	Prepared By	Reviewed By	Approved By
0	27 January 2025	For review	Ben Gray	Ben Gray	Ben Gray

CONTENTS

C	ONTEN.	TS	. 2
ΑI	BBREVI	IATIONS	. 1
1	INT	RODUCTION	. 2
2	ST/	ANDARDS	2
	_		
3	PRO	OJECT PARTICULARS	. 2
	3.1	CLIENT	
	3.2	Project Details	. 2
4	PER	RSONEL	. 3
5	PR(DJECT HORIZONTAL AND VERTICAL DATUM	. 3
	5.1	Horizontal Datum	2
	5.2	Vertical Datum	
6	CIII	RVEY CONTROL	
7	SUF	RVEY EQUIPMENT	
	7.1	Survey Vessel	
	7.2	BATHYMETRY SYSTEMS	_
	7.2.		_
	7.2.		
	7.2.		
	7.2.		
	7.2.	, , , , , , , , , , , , , , , , , , , ,	
	7.2.		
	7.2.		
	7.2.		
8	SUF	RVEY PARAMETERS	. 7
	8.1	LINE SPACING	. 7
	8.2	SOUNDING SPEED.	. 7
	8.3	Rejection Criteria for Position Data	. 7
	8.4	Online Software Alarms	. 7
9	CO	VERAGE	. 8
10	1 C	DATA DELIVERABLES	. 8
11		HYDROGRAPHIC SURVEYOR APPROVAL	9

ABBREVIATIONS

The following abbreviations may be used in this document

AAPMA Association of Australian Port and Marine Authorities

AGD Australian Geodetic Datum
AHD Australian Height Datum

AHSCP Australasian Hydrographic Surveyors Certification Panel

AMG Australian Map Grid

BM Bench Mark
CD Chart Datum

CoG Vessel Centre of Gravity
CoR Vessel Centre of Rotation

CPHS1 Certified Practicing Hydrographic Surveyor Level 1

DGPS Differential Global Positioning System

DTM Digital Terrain Model

GAMS GPS Azimuth Measurement Subsystem

GDA94 Geodetic Datum Australia 1994 GDA2020 Geodetic Datum Australia 2020 GNSS Global Navigation Satellite System

HAT Highest Astronomical Tide

ICSM Intergovernmental Committee on Surveying and Mapping

IHO International Hydrographic Organization

IMU Inertial Motion Unit

kHz Kilohertz

LAT Lowest Astronomical Tide

MBES Multi Beam Echo Sounder

MGA94 Mapping Grid of Australia 1994

MSL Mean Sea Level

MRU Motion Reference Unit
PDOP Position Dilution of Precision

POSMV Position Orientation System for Marine Vessel

PSM Permanent Survey Mark
PTA Performance Test Area

RL Reduced Level

RMSE Root Mean Square Error

RMS Refer Manufacturer Specifications

RTK GPS Real Time Kinematic Global Positioning System

SSSI Surveying and Spatial Sciences Institute

SBES Single Beam Echo Sounder
SSM State Survey Mark (PSM)
SVP Sound Velocity Profile
SVS Sound Velocity Sensor

TBM Tidal Bench Mark / Temporary Benchmark

UPS Uninterruptible Power Supply
UTM Universal Transverse Mercator
VDOP Vertical Dilution of Precision
VRF Vessel Reference Frame
WGS84 World Geodetic System 1984

1 INTRODUCTION

Astute Surveying Pty Ltd has been contracted by DPI to undertake a hydrographic survey over the proposed Mussel Farm area, Jervis Bay. The surveys are being used to assess areas for any heritage related objects on the seabed. This report covers the GNSS control used, vessel, equipment, survey method and checks conducted while undertaking the surveys.

2 **STANDARDS**

This survey complies with the latest versions of relevant codes and standards for a single beam investigation survey:

- IHO S-44 Standards for Hydrographic Surveys
- AAPMA Standards for Hydrographic Surveys within Australian Waters
- ICSM Australian Tides Manual Special Publication No.9

3 PROJECT PARTICULARS

3.1 Client

DPI

3.2 Project Details

Conduct high resolution Multibeam Hydrographic Survey within the Orange polygons

Figure 1 – Jervis Bay Survey Areas

4 PERSONEL

Surveys were directly supervised on-site by a CPHS Level 1 Surveyor.
Ben Gray (Supervising)
CPHS Level 1 (SSSI AHCP) MSSSI
Bachelor of Spatial Sciences MSQ
Astute Surveying Pty Ltd
18+ Years of continuous hydrographic survey operations

Paul Davies - Survey assistant

5 PROJECT HORIZONTAL AND VERTICAL DATUM

5.1 Horizontal Datum

The project horizontal datum used is the Geocentric Datum of Australia 2020 (GDA2020) with coordinates projected onto the Map Grid of Australia 2020 (MGA2020) Zone 56.

Table 2 below lists the key settings for the datum.

PARAMETER	VALUE	
Datum	Geocentric Datum of Australia 2020 (GDA2020)	
Reference Frame	International Terrestrial Reference Frame 2014 (ITRF2014)	
Ellipsoid	GRS80	
Semi Major Axis	6,378,137.0 meters	
Inverse flattening	298.257222101	
Projection	Map Grid of Australia 2020 (MGA2020)	
Projection Method	Universal Transverse Mercator (UTM),	
Zone	56	
Latitude of Origin	0° S	
Longitude of Origin	153° E	
Scale factor at Origin	0.9996	
False Easting	500,000m	

PARAMETER	VALUE
False Northing	10,000,000m

Table 1: MGA2020 parameters

5.2 Vertical Datum

Depths were determined relative to the GDA2020 ellipsoid, Australian Height Datum

6 SURVEY CONTROL

The existing AUSCORS Nowra GPS Base Station was used

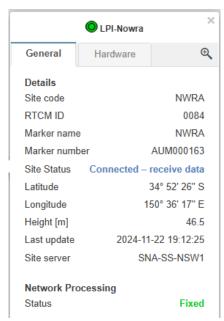


Table 3: GNSS base station details

7 SURVEY EQUIPMENT

Primary Survey Equipment and Software

7.1 Survey Vessel

The hydrographic survey was carried out from Astute Surveying's survey vessel Coastal Explorer.

Type: Aluminium Single hull.

Length: 6m Beam: 2.4m Draft: 0.3m

Propulsion: 200hp Suzuki outboard

7.2 Bathymetry Systems

Type: Norbit i77h
Transducer Frequencies: 400 kHz
Beams: 1024

Motion Compensation: Ocenmaster Ping Rate: 20Hz+

Installation: Over the Side

Limiting Sea Conditions: Primarily aeration of transducers at > 1.5m swell

The Multibeam Echo Sounder is mounted on an over the side pole located on the port side, close to midship and 0.06m from the centreline. The pole and mounting arrangement is designed to minimize flex and utilises specialised brackets on the side of the hull to ensure the pole locates to an identical position each time it is attached. The mount has been tested (by subsequent bar checks and patch tests) to accurately fit back to its original position each time the vessel is used for survey.

7.2.1 Position and motion sensor

- Reach RS2 GNSS
- The antenna is mounted directly above the transducer with unimpeded access to satellites.

7.2.2 RTK Rover

Emlid Reach RS3

7.2.3 Radio RTK correction data receiver

• 4G

7.2.4 Sound Velocity Probe

AML Base X SVP – direct Sound Velocity profile measurement

7.2.5 Acquisition and Processing Software

Hypack 2024 is a powerful and specialised package by Hypack for multibeam data collection and processing. It allows users to design a survey, for both single and multibeam data, collect and edit the data, and post process it to create contours, cross-sections, volumes, TIN Models etc.

7.2.6 Calibration

Prior to any survey work the following checks were made to ensure the equipment was returning the correct information to the survey software. The data entered in the software was also checked by carrying out these tests.

7.2.7 Base Station

The base station operation was checked by measuring with a Emlid Reach RS3 receiver at known high order bench a mark using constrained centring (tilt compensated). This was to test the horizontal and vertical position of the Raymond Terrace base station (FTD2). An accurate result proved the integrity the Base Station and GPS rover unit.

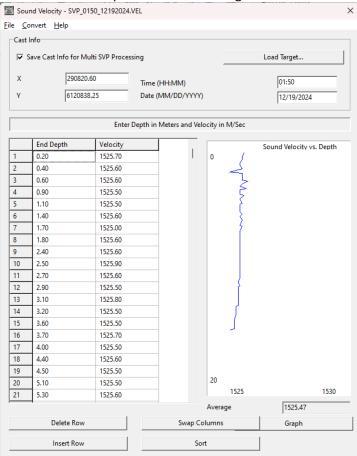

Mark	Easting	Northing	Height	
Average (250 readings)	287827.092	6117655.723	5.039	
SSM	287827.133	6117655.666	5.080	
Difference	0.041	-0.057	0.041	
1 SD	0.008	0.005	0.012	
2 SD	0.016	0.010	0.024	

Table 3: Benchmark position check results

As can be seen from the results above, the Base Station was outputting the correct RTK corrections.

7.2.8 Sound Velocity Profile (SVP)

Manual SVP was collected at the time of survey and applied at the time of processing. The SVP corrects any differences in the speed of sound through the water column.

8 SURVEY PARAMETERS

8.1 Line Spacing

The site was covered 100% coverage which dictated the line spacing with 120 degree swath.

8.2 Sounding Speed

The minimum ping rate during the surveys was 20Hz which can be set in the software. The vessel speed during survey was less than 6 knots (~3m/s). This meant there was a good representation of the creek bed.

8.3 Rejection Criteria for Position Data

The following standards were used to ensure correct position reliability was maintained:

Minimum Satellite Elevation: 15°
Min Satellite Count: 6
Maximum HDOP: 4
Maximum VDOP: 4

Maximum Age of Corrections: 2 seconds

Data storage would have ceased had this criterion been exceeded

8.4 Online Software Alarms

All the equipment linked to the survey system was monitored for communication errors.

- The PPS time synchronisation signal was monitored for integrity.
- The RTK system timeout -2 seconds.

If any of these systems fell outside the accepted limits then an alarm would have been raised in the system, and investigated by the survey team.

9 **COVERAGE**

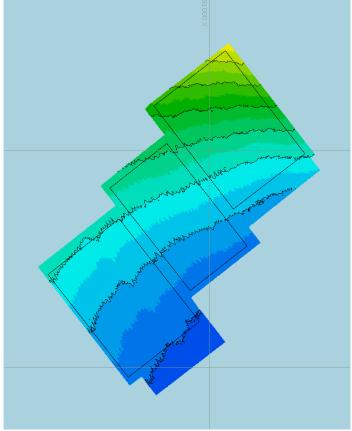


Figure 3 - Coverage Map Jervis Bay.

10 DATA DELIVERABLES

All processed data is delivered in the following formats:

Digital

- 20241218 JB Mussel Farm MGA2020_AHD 1m grid average Neg Down.laz
- 20241218 JB Mussel Farm MGA2020_AHD 2m grid Neg Down.laz
- 20241218 JB Mussel Farm MGA2020_AHD 1m grid average Neg Down.xyz
- 20241218 JB Mussel Farm MGA2020_AHD 2m grid Neg Down.xyz
- 20241218 Jervis Bay Mussel Farm Plan 001.pdf

11 HYDROGRAPHIC SURVEYOR APPROVAL

Survey Report and Deliverables Approved By

B. W. Cry

27/01/2025

Ben Gray

Certified Professional Hydrographic Surveyor Level 1